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Abstract. Let G = (V, E) be a graph with an initial sign s(v)e { _+ 1} for every vertex vs V. When a 
vertex v becomes active, it resets its sign to s'(v) which is the sign of the majority of its neighbors 
(s'(v) = 1 if there is a tie). G is in a stable state if s(v) = s'(v) for all v e V. We show that for every graph 
G = (V, E) and every initial signs, there is a sequence v~, v 2 . . . . .  v, of vertices of G, in which no vertex 
appears more than once, such that ifv i becomes active at time i, (l < i _< r), then after these r steps G 
reaches a stable state. This proves a conjecture of Miller. We also consider some generalizations to 
directed graphs with weighted edges. 

1. Introduction 

A threshold network N is a directed graph  G = (V, E) with a fixed real weight w((u, v)) 
assigned to each (directed) edge (u, v)~ E and  a var iable  sign s(v)e {+1}  assigned 
to each vertex v e  V. F o r  a vertex v~ V put  N(v)= {u~ V: (u,v)eE}. Init ial ly,  the 
vertices of N are not  active and each sign has an initial value. When  a node  v e V 
becomes active it changes its sign from s(v) to s'(v) accord ing  to the fol lowing rule: 

- 1  i f2{s(u)w(u,v):ueN(v)} < 0 
= + 1  u s'(v) if2{s(u)w(u,v): eN(v)}  >_0 (1.1) 

s(v) if N(v) = 2L 

Thresho ld  networks  can s imulate  every boo lean  circuit  and  their c o m p u t a t i o n a l  
power  is s tudied in [2]. Neurons  also seem to act  according  to a s imilar  th reshold  
rule and var ious  types of neural  ne tworks  have been used to s imulate  associat ive  
memory  [1]. The main  difference be tween neura l  ne tworks  and boo lean  circuits  is 
the t ime at  which the vertices become active. The  t iming is synchronous if all vertices 
become active s imultaneously.  The  t iming is asynchronous when only one vertex 
becomes active at a time. The  ne twork  is symmetric if (u, v) ~ E implies (v, u) ~ E and  
w((u, v)) = w((v, u)). Poljak and Sura [4] showed that  symmetr ic  threshold networks,  
when run synchronously, reach a cycle of  size at  most  two. Using an "energy" 
function one can show that  symmetr ic  ne tworks ,  when run  asynchronous ly ,  mus t  
a lways reach a stable state, i.e., a s tate where  no vertex will change its sign once it 
becomes active. In  the general  case, however ,  there  are  s imple examples  of  th reshold  
ne tworks  with no stable states at all. (A di rec ted odd  cycle with all edge weights 
negative is such an example.)  
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The  si tuation changes radically if all edge weights are positive. Our  main  result, 
s tated below, is that in this case our  ne twork  can always reach, under a suitable 
asynchronous  run, a stable state with at mos t  one sign change per vertex. This  result 
was conjectured by G. Miller [3]. 

Theorem 1.1. Let N be a threshold network with positive edge weights and arbitrary 
initial sign values. Then there is an asynchronous run with at most one sign change 
per vertex which leads N to a stable state. 

We prove  this result in Section 2. Section 3 contains some concluding remarks.  

2. The Proof 

Let N = (V, E) be our  threshold ne twork  where w((u, v)) > 0 for all (u, v)~ E. Con-  
sider the following a lgor i thm for construct ing an asynchronous  run of N. 

Algorithm 1: Stabilize (N) 

1. While there is some v s V that  needs to change its sign from - 1 to + 1 do: 
act ivate the first such v 

end. 

2. While there is some v ~ V that  needs to change its sign from + 1 to - 1 do: 
act ivate the first such v 

end. 

We need the following simple lemma.  

L e m m a  2.1. N reaches a stable state via Algorithm 1. During the algorithm each node 
changes its sign at most twice. 

Proof. F o r  v~ V let s(v) denote its sign in the end of the a lgor i thm and define s'(v) 
by (1.1). We must show that  s(v) = s'(v) for all v~ V. If v~ V and s(v) = + 1 this is 
obvious,  since otherwise s'(v) = - 1 and step 2 of the a lgor i thm has not yet been 
completed.  Assume that s(v)= - 1  and s ' ( v ) =  + 1  for some v~ V. Not ice  that  
during step 2 of our  a lgori thm the only sign c h a n g e s t h a t  occur  are f rom plus to 
minus. Since all edge weights are positive we conclude that  v certainly needed to 
change its sign to + 1 also before step 2 or  any par t  of  it. Hence at the end of step 
1 the sign ofv  should have been + 1, and this sign should have remained unchanged  
dur ing step 2, contradict ing the hypothesis  s(v) = - 1 .  Hence our  assumpt ion  is 
false and  N reaches a stable state via Algor i thm 1. The  second par t  of  the l emma 
is obvious.  [ ]  

Algor i thm 1 supplies an asynchronous  run of N, in which first the vertices of  
some subset  A _~ V change their signs f rom - 1 to + 1 and then the vertices of  
B G V change their signs from + l to - 1. Put  C = A f3 B and suppose C # ~ .  The  
vertices of  C are the only ones that  change their signs twice during the a lgori thm. 
Consider  now the following new algori thm, that  depends on A and C. 
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Algorithm 2: Stabilize (N, .4, C) 

1. While there is some v 6 A - C that needs to change its sign from - 1 to + 1 do: 
activate the first such v 

end. 

2. While there is some v ~ V that needs to change its sign from + 1 to - 1 do: 
activate the first such v 

end. 

Lemma 2.2. N reaches a stable state via Algorithm 2. The vertices that change their 
signs during step 1 of the algorithm form a subset of A - C and those that change 
their signs during step 2 form a superset of B - C. 

Remark 2.3. The stable state reached by Algorithm 2 can be different from the one 
reached by Algorithm 1. An example is given in Section 3. The same example shows 
that it is possible that some vertices change their sign twice in Algorithm 2. 

Proof of Lemma 2.2. The only difference between step 1 of Algorithm 1 and that of 
Algorithm 2 is that in the second algorithm we do not allow to change the signs of 
vertices in C:from - 1 to + 1. Therefore, every plus at the end of step 1 of the second 
algorithm is certainly a plus at the end of step 1 of the first algorithm. However, 
this implies, (since all edge weights are positive), that every vertex in B - C changes 
sign from plus to minus during step 2 of Algorithm 2. This proves the second part  
of the lemma, and shows that any vertex that has a minus sign at the end of 
Algorithm 1 has a minus sign at the end of Algorithm 2 as well. Thus, certainly no 
v ~ C needs to change its sign from minus to plus at the end of Algorithm 2, since 
this v was satisfied with its minus even at the end of Algorithm 1, where at most as 
many minuses were around. It remains to show that no v ~ V - C needs to change 
its sign at the end of Algorithm 2. This certainly holds, as in the proof of Lemma 
2.1, for v - s whose sign is plus. Assume ve  V - C has a minus sign and needs to 
change it to a plus. Then, as in the proof  of Lemma 2.1, its sign was minus also at 
the end of step 1 of our Algorithm 2. If v ~ A we would change the sign to plus then, 
hence v ~ A. But then v had a minus sign during all Algorithm 2, and also during 
all Algorithm 1. Since it was satisfied with its minus at the end of Algorithm 1, it is 
certainly satisfied at the end of Algorithm 2, where there are at least as many 
minuses. This completes the proof  of the lemma. [] 

Note that the proof of Lemma 2.2 does not depend on the special choice of the 
sets A, B ~ V done in Algorithm 1. For  any subsets A, B ~ V, and C = A f3 B, 
suppose that we have an asynchronous run of N in which first all vertices of A 
change their signs from minus to plus and then all vertices of B change their signs 
from plus to minus. Suppose, further, that N reaches a stable state in this run. Then 
a close look at our last proof  shows that it implies that the algorithm Stabilize 
(N, A, C) will satisfy all the assertions of Lemma 2.2. 

We can now prove Theorem 1.1. The algorithm Stabilize (N) supplies an initial 
asynchronous run of N to a stable state, where at first the vertices of A ~ V change 
signs from minus to plus and then the vertices of B ~ V change signs from plus to 
minus. Put A t3 B = C. If C = ~ we have our desired run. Else consider the algo- 
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rithm Stabilize (N, A, C) and let A', B' be its corresponding A, B subsets. By Lemma 
2.2, in this algorithm N reaches a stable state, and since A' ~ A - C, IA'I _< IAI - 1. 
By repeatedly applying the process, (which must terminate since IAI decreases by 
at least 1 in each iteration) we obtain an asynchronous run with at most one sign 
change per vertex, in which N reaches a stable state. [] 

3. Concluding Remarks 

1) Note that the proof of Theorem 1.1 supplies an efficient algorithm to find an 
asynchronous run of the desired type. As an illustration of the proof (and ias 
promised in Remark 2.3) we apply our method to find an asynchronous run of the 
desired type in the following network N on the vertices {I, 2, 3, 4, 5, 6}, given in 
Fig. I. (All edge weights are + 1.) 

Fig. I 

By the algorithm Stabilize (N) we get Fig. 2(a)in the end of step 1 and Fig. 2(b)in 
the end of step 2. Hence A = {3, 4, 5, 6}, B = {2, 3}, C = A N B = {3}. 

By the algorithm Stabilize (N, A, C) we get Fig. 3(a) in the end of step 1 and Fig. 
3(b) in the end of step 2. Here A' = {6}, B' = {2, 6} and C' = A' n B' = {6}. 

By the algorithm Stabilize (N, A', C') we get Fig. 1 in the end of step 1 and Fig. 3(b) 
in the end of step 2. This is an asynchronous run with at most one sign change per 
vertex. 

2) As we have already mentioned, the situation changes radically when we allow 
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also negative edge weights and there are such threshold networks with no stable 
states at all. We can show that the decision problem: "given a threshold network 
N, decide whether it has a stable state" is NP-complete .  Similarly, the problem: 
"given a threshold network N with initial sign values, decide whether it can reach 
a stable state by some asynchronous  run" is NP-complete .  We omit the details. 
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