
Graphs and Combinatorics 1,305-310 (1985)

Graphs and
Combinatorics
�9 Springer-Verlag 1985

Asynchronous Threshold Networks

N o g a Alon

Department of Mathematics, Tel Aviv University, Tel Aviv, Israel and
Bell Communications Research, Morristown, NJ 07960, USA

Abstract. Let G = (V, E) be a graph with an initial sign s(v)e { _+ 1} for every vertex vs V. When a
vertex v becomes active, it resets its sign to s'(v) which is the sign of the majority of its neighbors
(s'(v) = 1 if there is a tie). G is in a stable state if s(v) = s'(v) for all v e V. We show that for every graph
G = (V, E) and every initial signs, there is a sequence v~, v 2 v, of vertices of G, in which no vertex
appears more than once, such that ifv i becomes active at time i, (l < i _< r), then after these r steps G
reaches a stable state. This proves a conjecture of Miller. We also consider some generalizations to
directed graphs with weighted edges.

1. Introduction

A threshold network N is a directed graph G = (V, E) with a fixed real weight w((u, v))
assigned to each (directed) edge (u, v)~ E and a var iable sign s(v)e {+1} assigned
to each vertex v e V. F o r a vertex v~ V put N(v)= {u~ V: (u,v)eE}. Init ial ly, the
vertices of N are not active and each sign has an initial value. When a node v e V
becomes active it changes its sign from s(v) to s'(v) accord ing to the fol lowing rule:

- 1 i f2{s(u)w(u,v):ueN(v)} < 0
= + 1 u s'(v) if2{s(u)w(u,v): eN(v)} >_0 (1.1)

s(v) if N(v) = 2L

Thresho ld networks can s imulate every boo lean circuit and their c o m p u t a t i o n a l
power is s tudied in [2]. Neurons also seem to act according to a s imilar th reshold
rule and var ious types of neural ne tworks have been used to s imulate associat ive
memory [1]. The main difference be tween neura l ne tworks and boo lean circuits is
the t ime at which the vertices become active. The t iming is synchronous if all vertices
become active s imultaneously. The t iming is asynchronous when only one vertex
becomes active at a time. The ne twork is symmetric if (u, v) ~ E implies (v, u) ~ E and
w((u, v)) = w((v, u)). Poljak and Sura [4] showed that symmetr ic threshold networks,
when run synchronously, reach a cycle of size at most two. Using an "energy"
function one can show that symmetr ic ne tworks , when run asynchronous ly , mus t
a lways reach a stable state, i.e., a s tate where no vertex will change its sign once it
becomes active. In the general case, however , there are s imple examples of th reshold
ne tworks with no stable states at all. (A di rec ted odd cycle with all edge weights
negative is such an example.)

306 N. Alon

The si tuation changes radically if all edge weights are positive. Our main result,
s tated below, is that in this case our ne twork can always reach, under a suitable
asynchronous run, a stable state with at mos t one sign change per vertex. This result
was conjectured by G. Miller [3].

Theorem 1.1. Let N be a threshold network with positive edge weights and arbitrary
initial sign values. Then there is an asynchronous run with at most one sign change
per vertex which leads N to a stable state.

We prove this result in Section 2. Section 3 contains some concluding remarks.

2. The Proof

Let N = (V, E) be our threshold ne twork where w((u, v)) > 0 for all (u, v)~ E. Con-
sider the following a lgor i thm for construct ing an asynchronous run of N.

Algorithm 1: Stabilize (N)

1. While there is some v s V that needs to change its sign from - 1 to + 1 do:
act ivate the first such v

end.

2. While there is some v ~ V that needs to change its sign from + 1 to - 1 do:
act ivate the first such v

end.

We need the following simple lemma.

L e m m a 2.1. N reaches a stable state via Algorithm 1. During the algorithm each node
changes its sign at most twice.

Proof. F o r v~ V let s(v) denote its sign in the end of the a lgor i thm and define s'(v)
by (1.1). We must show that s(v) = s'(v) for all v~ V. If v~ V and s(v) = + 1 this is
obvious, since otherwise s'(v) = - 1 and step 2 of the a lgor i thm has not yet been
completed. Assume that s(v)= - 1 and s ' (v) = + 1 for some v~ V. Not ice that
during step 2 of our a lgori thm the only sign c h a n g e s t h a t occur are f rom plus to
minus. Since all edge weights are positive we conclude that v certainly needed to
change its sign to + 1 also before step 2 or any par t of it. Hence at the end of step
1 the sign ofv should have been + 1, and this sign should have remained unchanged
dur ing step 2, contradict ing the hypothesis s(v) = - 1 . Hence our assumpt ion is
false and N reaches a stable state via Algor i thm 1. The second par t of the l emma
is obvious. []

Algor i thm 1 supplies an asynchronous run of N, in which first the vertices of
some subset A _~ V change their signs f rom - 1 to + 1 and then the vertices of
B G V change their signs from + l to - 1. Put C = A f3 B and suppose C # ~ . The
vertices of C are the only ones that change their signs twice during the a lgori thm.
Consider now the following new algori thm, that depends on A and C.

Asynchronous Threshold Networks 307

Algorithm 2: Stabilize (N, .4, C)

1. While there is some v 6 A - C that needs to change its sign from - 1 to + 1 do:
activate the first such v

end.

2. While there is some v ~ V that needs to change its sign from + 1 to - 1 do:
activate the first such v

end.

Lemma 2.2. N reaches a stable state via Algorithm 2. The vertices that change their
signs during step 1 of the algorithm form a subset of A - C and those that change
their signs during step 2 form a superset of B - C.

Remark 2.3. The stable state reached by Algorithm 2 can be different from the one
reached by Algorithm 1. An example is given in Section 3. The same example shows
that it is possible that some vertices change their sign twice in Algorithm 2.

Proof of Lemma 2.2. The only difference between step 1 of Algorithm 1 and that of
Algorithm 2 is that in the second algorithm we do not allow to change the signs of
vertices in C:from - 1 to + 1. Therefore, every plus at the end of step 1 of the second
algorithm is certainly a plus at the end of step 1 of the first algorithm. However,
this implies, (since all edge weights are positive), that every vertex in B - C changes
sign from plus to minus during step 2 of Algorithm 2. This proves the second part
of the lemma, and shows that any vertex that has a minus sign at the end of
Algorithm 1 has a minus sign at the end of Algorithm 2 as well. Thus, certainly no
v ~ C needs to change its sign from minus to plus at the end of Algorithm 2, since
this v was satisfied with its minus even at the end of Algorithm 1, where at most as
many minuses were around. It remains to show that no v ~ V - C needs to change
its sign at the end of Algorithm 2. This certainly holds, as in the proof of Lemma
2.1, for v - s whose sign is plus. Assume ve V - C has a minus sign and needs to
change it to a plus. Then, as in the proof of Lemma 2.1, its sign was minus also at
the end of step 1 of our Algorithm 2. If v ~ A we would change the sign to plus then,
hence v ~ A. But then v had a minus sign during all Algorithm 2, and also during
all Algorithm 1. Since it was satisfied with its minus at the end of Algorithm 1, it is
certainly satisfied at the end of Algorithm 2, where there are at least as many
minuses. This completes the proof of the lemma. []

Note that the proof of Lemma 2.2 does not depend on the special choice of the
sets A, B ~ V done in Algorithm 1. For any subsets A, B ~ V, and C = A f3 B,
suppose that we have an asynchronous run of N in which first all vertices of A
change their signs from minus to plus and then all vertices of B change their signs
from plus to minus. Suppose, further, that N reaches a stable state in this run. Then
a close look at our last proof shows that it implies that the algorithm Stabilize
(N, A, C) will satisfy all the assertions of Lemma 2.2.

We can now prove Theorem 1.1. The algorithm Stabilize (N) supplies an initial
asynchronous run of N to a stable state, where at first the vertices of A ~ V change
signs from minus to plus and then the vertices of B ~ V change signs from plus to
minus. Put A t3 B = C. If C = ~ we have our desired run. Else consider the algo-

308 N. Alon

rithm Stabilize (N, A, C) and let A', B' be its corresponding A, B subsets. By Lemma
2.2, in this algorithm N reaches a stable state, and since A' ~ A - C, IA'I _< IAI - 1.
By repeatedly applying the process, (which must terminate since IAI decreases by
at least 1 in each iteration) we obtain an asynchronous run with at most one sign
change per vertex, in which N reaches a stable state. []

3. Concluding Remarks

1) Note that the proof of Theorem 1.1 supplies an efficient algorithm to find an
asynchronous run of the desired type. As an illustration of the proof (and ias
promised in Remark 2.3) we apply our method to find an asynchronous run of the
desired type in the following network N on the vertices {I, 2, 3, 4, 5, 6}, given in
Fig. I. (All edge weights are + 1.)

Fig. I

By the algorithm Stabilize (N) we get Fig. 2(a)in the end of step 1 and Fig. 2(b)in
the end of step 2. Hence A = {3, 4, 5, 6}, B = {2, 3}, C = A N B = {3}.

By the algorithm Stabilize (N, A, C) we get Fig. 3(a) in the end of step 1 and Fig.
3(b) in the end of step 2. Here A' = {6}, B' = {2, 6} and C' = A' n B' = {6}.

By the algorithm Stabilize (N, A', C') we get Fig. 1 in the end of step 1 and Fig. 3(b)
in the end of step 2. This is an asynchronous run with at most one sign change per
vertex.

2) As we have already mentioned, the situation changes radically when we allow

309

(

(
(a)

Asynchronous Threshold Networks

Fig. 2

(b)

(

(

(

)

:)

(a)

Fig. 3

(b)

310 N. Alon

also negative edge weights and there are such threshold networks with no stable
states at all. We can show that the decision problem: "given a threshold network
N, decide whether it has a stable state" is NP-complete . Similarly, the problem:
"given a threshold network N with initial sign values, decide whether it can reach
a stable state by some asynchronous run" is NP-complete . We omit the details.

References

1. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational
abilities. Proc. Natl. Acad. Sci. USA, 79, 2554-2558 (1982)

2. Lepley, M., Miller, G.: Computational power for networks of threshold devices in an asyn-
chronous environment (to appear)

3. Miller, G.: Private communication
4. Poljak, S., Sura, M.: On periodical behavior in societies with symmetric influences. Com-

binatorica 3, 119-121 (1983)

